If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2-17a-34=0
a = 4; b = -17; c = -34;
Δ = b2-4ac
Δ = -172-4·4·(-34)
Δ = 833
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{833}=\sqrt{49*17}=\sqrt{49}*\sqrt{17}=7\sqrt{17}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-7\sqrt{17}}{2*4}=\frac{17-7\sqrt{17}}{8} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+7\sqrt{17}}{2*4}=\frac{17+7\sqrt{17}}{8} $
| X+3=6-x-x^2 | | 2x²-7x-3=15 | | 2x-7x-3=15 | | -3-2(x-4)=2-(x-1) | | (-x^2+4x-2)=(x^2+3x-8) | | 5+3(2x+1)=-5+(3x+3) | | 20/x=30-x | | x-x+6=19 | | 25x/x-25=60 | | 9(90-x)=4(180-x)-20 | | x^2+3x^2+1,5x-0,5=1,5x+3.5 | | 6x-x=25-x | | 9^x+3^2x-1=36 | | m+2m+5m=-32 | | 3x+20+(2x-15)=180 | | 3x-20+2x+15=180 | | 5a+5=8 | | 8x-202=68-7x | | 5-72/f=1.3 | | 3x=109-9x | | 1.5÷2x=0.25 | | 5y-2/6=35 | | (2x-9)(-x+2)=0 | | 11/6=n+(7/9) | | 7y/5-4=y-4 | | -4+-9x+3x2+x3=0 | | a+31÷2=5 | | 10+5b=20 | | 2y+5/7=26/5-7 | | 3n+10/10=n+3/3 | | (X+15)(5x-7)=0 | | Z^3+3-3i=0 |